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SUMMARY

This study formulates general guidelines to extend an explicit code with a great variety of implicit and
semi-implicit time integration schemes. The discussion is based on their specific implementation in the
Versatile Advection Code, which is a general purpose software package for solving systems of non-linear
hyperbolic (and/or parabolic) partial differential equations, using standard high resolution shock
capturing schemes. For all combinations of explicit high resolution schemes with implicit and semi-im-
plicit treatments, it is shown how second-order spatial and temporal accuracy for the smooth part of the
solutions can be maintained. Strategies to obtain steady state and time accurate solutions implicitly are
discussed. The implicit and semi-implicit schemes require the solution of large linear systems containing
the Jacobian matrix. The Jacobian matrix itself is calculated numerically to ensure the generality of this
implementation. Three options are discussed in terms of applicability, storage requirements and compu-
tational efficiency. One option is the easily implemented matrix-free approach, but the Jacobian matrix
can also be calculated by using a general grid masking algorithm, or by an efficient implementation for
a specific Lax–Friedrich-type total variation diminishing (TVD) spatial discretization. The choice of the
linear solver depends on the dimensionality of the problem. In one dimension, a direct block tridiagonal
solver can be applied, while in more than one spatial dimension, a conjugate gradient (CG)-type iterative
solver is used. For advection-dominated problems, preconditioning is needed to accelerate the conver-
gence of the iterative schemes. The modified block incomplete LU-preconditioner is implemented, which
performs very well. Examples from two-dimensional hydrodynamic and magnetohydrodynamic computa-
tions are given. They model transonic stellar outflow and recover the complex magnetohydrodynamic
bow shock flow in the switch-on regime found in De Sterck et al. [Phys. Plasmas, 5, 4015 (1998)].
Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many physical and astrophysical phenomena can be modeled by a conservative system of
hyperbolic partial differential equations with additional non-hyperbolic source terms. Gener-
ally, we write such a system as
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(tUb =Rb (Ub )= −%
i
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where t is the time co-ordinate, i and j run over one, two or three components of the spatial
co-ordinate x, Ub denotes the vector of conservative variables, and the right-hand-side Rb
contains the source terms Sb and the derivatives of the fluxes Fb i. An example of such a system
is given by the equations of magnetohydrodynamics (MHD), where the conservative variables
are mass, momentum, total energy density and the magnetic field components. Source terms
may then represent external gravitational forces, or dissipative effects like viscosity, resistivity
and thermal conduction, among others.

In order to solve (1) numerically, one usually combines a sophisticated spatial discretization
with explicit time stepping, e.g. a predictor–corrector scheme. However, in such explicit
schemes, the numerical stability conditions put an upper limit Dtmax on the allowed time step.
The explicit approach can be very inefficient when we use time marching towards a steady
state solution and only the final solution is of interest. If the convergence towards the steady
state stagnates, the physical time corresponding to the final solution is huge relative to Dtmax,
therefore, an excessive number of explicit time steps are needed.

Even in time-accurate calculations, it may occur that the variables Ub (t) evolve on a
time-scale much longer than Dtmax. For example, even if the fastest wave of the hyperbolic
system is not induced during the simulation, it still restricts the time step. Another possibility
is that a strongly elliptic source term imposes a limiting diffusion time Dtmax, while in reality
it is balanced by another term and Ub (x, t) evolves slowly.

An implicit treatment of some or all of the variables in system (1) can lift the most severe
stability restrictions on the time step, or can even allow arbitrarily large time steps be taken to
reach a steady state. The right strategy of temporal discretization for the most efficient
numerical solution clearly depends on the problem at hand. To allow for a problem-specific
temporal discretization, we implemented general (semi-)implicit time integration schemes in the
Versatile Advection Code (VAC, see http://www.phys.uu.nl/� toth/) [1,2], which is a general
purpose software package for solving equations of type (1). The newly implemented (semi-
)implicit time integration schemes now allow the most optimal combination of the explicit high
resolution schemes (see Section 2) with an implicit treatment of part or all of the variables,
fluxes and source terms involved. Although we will discuss implementation aspects specifically
for VAC, our approach may serve as a general guideline to extend an explicit code with an
optional implicit time integration scheme. We differentiate between steady state and time-accu-
rate problems, and show how for time-accurate problems, second-order temporal accuracy is
maintained in various semi-implicit discretizations where only some of the variables or only
some terms are treated implicitly. This is done in Section 3.

If we denote the implicitly treated variables by Ub impl and the implicitly treated part of Rb by
Rb impl, the essential building block for the implicit and semi-implicit schemes resides in the
accurate evaluation of the Jacobian matrix (Rb impl/(Ub impl (Section 4), and the ability to solve
the (large) linear systems, in which this matrix appears, efficiently (Section 5). We note that it
is clearly advantageous to have the option to treat only part of the variables and equations
implicitly. The stability problems encountered by explicit schemes are lifted by choosing Rb impl

to coincide with the part causing them, and the linear system can be solved faster when it is
smaller in size and/or the matrix elements are simple to calculate.

In Section 4, we show how we use the different spatial discretizations already available in the
explicit code (Section 2) to calculate the Jacobian matrix numerically. The simplest approach
is to approximate the action of (Rb impl/(Ub impl on a vector by the directional difference, every
time the iterative scheme requires a matrix–vector multiplication. This matrix-free method can
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be easily implemented, it is independent of the spatial discretization, and requires very little
storage. Unfortunately, the matrix–vector multiplication can become computationally ex-
pensive, direct linear solvers cannot be used, and possibilities for preconditioning are very
restricted. Moreover, the iterative solvers may fail to converge due to the fact that the
matrix is effectively perturbed at each iteration by the error in the numerical evaluation of
the matrix–vector product. However, the matrix-free approach can be applied successfully
for treating implicitly elliptic-type source terms (e.g. resistivity in MHD) or in combination
with the minimal residual approximated implicit (MRAI) strategy, recently introduced in
[3].

Another option is to calculate and store the matrix elements by perturbing Ub and
applying the explicit scheme, so that the matrix can be used by any direct or iterative
scheme. This requires a lot of computation and storage for the matrix, thus we restrict
ourselves to compact spatial discretizations involving the nearest neighbouring cells only.
We describe a general and simple algorithm to obtain the matrix by perturbing the vari-
ables in appropriately chosen spatial patterns, and a less general, more complicated, but
also more efficient method, where we exploit a specific form of the spatial discretization.
The various implementations are discussed in Section 4.

Section 5 describes the linear solvers. In one spatial dimension, we use a direct solver for
the block tridiagonal systems. In more than one dimension, we solve the block penta- and
heptadiagonal systems with conjugate gradient (CG)-type iterative schemes (a recent
overview of these schemes is given in [4]). Conjugate gradient [5] is used for symmetric
matrices, while for non-symmetric systems, we can use the restarted generalized minimal
residual scheme (GMRES) [6] and the stabilized bi-conjugate gradient method (Bi-
CGSTAB) [7], and their generalizations GMRESR [8] and BiCGstab(l) [9]. For advection-
dominated problems, the modified block incomplete LU (MBILU) preconditioner [10] is of
vital importance to accelerate the convergence of the iterative schemes.

The motivation behind the development of all these algorithms lies in their ultimate
applicability to solve, e.g. the equations of hydrodynamics and magnetohydrodynamics. In
Section 6, we illustrate their effectiveness when calculating polytropic hydrodynamic outflow
from a rotating star and for magnetohydrodynamic bow shock calculations containing
multiple shock fronts. These steady state, two-dimensional problems cover smooth and
discontinuous flow problems respectively. In particular, we recover the complex topology of
a magnetohydrodynamic bow shock flow in the switch-on regime recently presented by De
Sterck et al. [11]. Other examples, including time-accurate computations, are found in
[12–14]. We compliment the suite of astrophysically oriented test problems given in an
accompanying paper [14], by providing all algorithmic and implementation details.

We conclude in Section 7 by summarizing the advantages of having optional implicit and
semi-implicit time discretization schemes available in a general code for hydro- and magne-
tohydrodynamic problems. A problem-specific approach to eliminate the most restrictive
constraint on the time step greatly accelerates the solution procedure.

2. EXPLICIT SCHEMES

Several equation modules of type (1) are available in VAC, all written in a dimension-inde-
pendent notation, with 15D53 spatial dimensions and C vector components with D5
C53. The D=1, C=2 or 3, and the D=2, C=3 cases are usually referred to as 1.5D
and 2.5D. Presently available equation modules are the equations of adiabatic hydro-
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dynamics, the hydrodynamic equations, the equations of isothermal MHD, and the MHD
equations.

The conservative variables Ub (x, t) are spatially discretized on a structured grid in a finite
volume sense: for each cell k of volume Vk, we store the average values Ub k(t) (1/
Vk) 	Vk

Ub (x, t). Until now, VAC was designed to advance Ub k in time using one out of four
spatially and temporally second-order-accurate explicit schemes: the flux corrected transport
scheme (FCT) [15] and three total variation diminishing (TVD) schemes [16], two of them
with a Roe-type Riemann solver [17,18] (TVD and TVD-MUSCL), and a Lax–Friedrichs-
type scheme (TVDLF) [19,20]. All of these methods calculate smooth flows to second-order
accuracy, and are able to capture discontinuities, but they differ in their diffusive and
dispersive character near such discontinuities. We briefly summarize the main properties of
these explicit schemes, for details see [20].

The FCT scheme is a conservative two-step method, where each step involves a transport
and diffusion stage ensuring stability, corrected wherever possible with an antidiffusion
stage to recover second-order accuracy. The FCT schemes can be rather dispersive close to
discontinuities, introducing spurious oscillations.

It is known from the mathematics of one-dimensional hyperbolic scalar equations that
the total variation does not increase with time. The TVD methods are constructed in such
a way that this property is carried over to the numerical total variation:

%
k

�DUk+1/2
n+1 �5%

k

�DUk+1/2
n �, (2)

where DUk+1/2=Uk+1−Uk with the sum running over all cells, and the superscripts n and
n+1 denote the discrete time levels. Generalizations of TVD schemes to multidimensional
systems of equations yield practically oscillation-free solutions.

The one-step TVD method can sharply resolve discontinuities, and does so by using an
approximate Riemann solver to advance the solution. The Riemann solver considers the
solution from time tn as a piecewise constant initial value problem (Riemann problem) at
each cell interface to get to time tn+1= tn+Dtn : provided the time step Dtn is small
enough, we can solve for the cell-averaged solution at time tn+1 by making a decomposi-
tion in the characteristic wave fields at each interface. The approximation results from
linearizing the system (1) to obtain the characteristic wave fields. The spatial and temporal
second-order accuracy is achieved by second-order correction terms corresponding to a
piecewise linear approximation. The TVD property (2) is ensured by applying limiters on
the jumps allowed in each of the characteristic wave fields.

Two-step TVD methods implemented are of MUSCL-type (monotonic upwind schemes
for conservation laws). A Hancock predictor step ensures the temporal second-order accu-
racy. Instead of applying limiters on the jumps in characteristic wave fields as in the
one-step TVD method, one can now limit the slopes obtained from the conservative vari-
ables DU themselves, or from the primitive variables, to achieve second-order spatial accu-
racy where the solution is smooth and the TVD property. TVD-MUSCL also makes use of
the Riemann solver-based decomposition in characteristic wave fields.

A computationally less expensive, slightly more diffusive, but very robust variant of this
scheme uses the fastest wave speed only so that no Riemann solver is required. This
Lax–Friedrich-type TVD scheme is called TVDLF, and is described in detail in [20]. In the
implicit schemes we will only need the first-order-accurate version, which updates the Ub
variables by
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Ub i
n+1=Ub i

n−
Dt

2Dx
[Fb i+1

n −Fb i−1
n ]+DtSb i+

Dt
2Dx

[c i+1/2
max (Ub i+1

n −Ub i
n)−c i−1/2

max (Ub i
n−Ub i−1

n )],

(3)

where c i+1/2
max denotes the maximum physical propagation speed corresponding to the interface-

averaged state of Ub i and Ub i+1. In the original Lax–Friedrichs scheme, cmax is replaced by
Dx/Dt, which makes that scheme more diffusive.

Boundary conditions are implemented by the use of ghost cells surrounding the computa-
tional domain. Before each step in the multi-step time integration schemes, the ghost cells are
updated based on Ub in the computational domain and on the type of the boundary condition
represented by the ghost cell. Typically, the variables in the ghost cell are either independent
of Ub (e.g. inflow), or functions of the neighbouring cell inside the computational domain (e.g.
solid wall or outflow). A special case arises for periodic boundary conditions that relate the
ghost cell to the opposite side of the computational domain. The implicit schemes are designed
to be compatible with any of these boundary conditions.

3. IMPLICIT AND SEMI-IMPLICIT SCHEMES

We discretize the system of equations (1) using a one parameter semi-implicit scheme to
advance from time level n to n+1 by

Ub n+1=Ub n+Dt [Rb (Ub n)+bRb impl(Ub n+1)−bRb impl(Ub n)], (4)

where Rb is a conservative high-order discretization (TVD, TVD-MUSCL, or TVDLF), Rb impl

contains all the implicitly treated terms, and the b parameter may vary between 0 and 1. We
note that, for Rb impl=Rb , the backward Euler scheme corresponds to b=1, and the trapezoidal
scheme to b=1/2.

When Rb impl is non-linear, (4) can be linearized by using

Rb impl(Ub n+1)=Rb impl(Ub expl
n+1, Ub impl

n )+
(Rb impl

(Ub impl

(Ub impl
n+1−Ub impl

n )+O(Dt2), (5)

where Ub impl contains all implicitly treated variables of Ub , hence symbolically, we write
Ub = (Ub expl, Ub impl). We always evaluate the Jacobian (Rb impl/(Ub impl at (Ub expl

n+1, Ub impl
n ), and in the

case of an explicit time dependence in the source term Sb , the evaluation is done at tn+1.
The linearization (5) makes an error O(Dt3) in (4), so it is always sufficient to prove

second-order accuracy for the non-linear scheme (4), which we do in the following subsections
for steady state and time-accurate problems.

3.1. Steady state problems

For steady state calculations, we are only interested in the solution of the non-linear
equation Rb (Ub )=0 and the obtained spatial accuracy. To allow for arbitrarily large time steps
when time marching towards the steady state, one can use a fully implicit backward Euler
scheme, where Ub impl=Ub , Rb impl=Rb and b=1. However, since only the final solution, where
Ub n+1 equals Ub n, is physically meaningful, we can use a spatially low-order discretization
(Rb low/(Ub for the Jacobian matrix (Rb impl/(Ub impl=(Rb /(Ub in (5). Hence, we set b=1 in (4),
linearize according to (5), replace the Jacobian by its low-order counterpart, and obtain the
steady state solution by performing a ‘pseudo-time stepping’. This amounts to a sequence of
solutions to linear systems
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Dt

−
(Rb low

(Ub
n

(Ub n+1−Ub )=Rb (Ub n), (6)

where Dt can, in principle, be arbitrarily large. The use of a high-order spatial discretization for
Rb ensures that the converged steady state solution is accurate.

We also implemented an alternative approach, where the non-linear system (4) is solved by
Newton–Raphson iterations. Then, large linear systems similar to (6) have to be solved per
Newton–Raphson iterate. As could be expected, the number of Newton–Raphson iterations
turns out to be of the same order as the number of pseudo-time steps needed to reach steady
state according to (6).

3.2. Time accurate problems

For time-accurate calculations, we can use scheme (4) with b=1/2 to obtain second-order
temporal accuracy, since

Ub n+1=Ub n+Dt
�

Rb (Ub n)+
1
2

Rb (Ub n+1)−
1
2

Rb (Ub n)
n

=Ub n+DtRb (Ub n)+
1
2

Dt2 dRb
dt

+O(Dt3),

(7)

where we assumed that Rimpl=R for all the implicitly treated variables. Unfortunately, this
trapezoidal scheme is only marginally stable for linear advection problems, and in general it is
hardly applicable for stiff problems (see e.g. [21,22]). A common practice is to use b slightly
above 1/2; however, such a scheme is neither second-order-accurate nor stable enough in
strongly non-linear cases.

Another approach to achieve second-order temporal accuracy is possible by using informa-
tion from time levels tn−1 and tn to arrive at tn+1. Therefore, we implemented a two-parameter
three-level time integration scheme,

Ub n+1=Ub n+DtnRb (Ub n)+Dtn
�

a
Ub n−Ub n−1

Dtn−1

−aRb (Ub n)+bRb impl(Ub n+1)−bRb impl(Ub n)
n

,

(8)

where Rb impl(Ub n+1) can again be linearized by (5). The scheme is three-level whenever the
parameter a"0, while for a=0, it is identical to (4). Note that when Rb impl=Rb , a=1/3 and
b=2/3, we get the second-order backward differentiation formula (BDF2) [23] for constant
step size Dt.

We show now how second-order temporal accuracy can be obtained. Let us assume that Un

was calculated from Un−1 with second-order temporal accuracy, thus (Un−Un−1)/Dtn− l=
R(Un)− (Dtn−1/2) dR/dt+O(Dt2). Substituting this into (8) we obtain

Ub n+1=Ub n+Dtn
�

Rb (Ub n)−a
Dtn−1

2
dRb
dt

+bDtn

dRb
dt

+O(Dt2)
n

=Ub n+DtnRb (Ub n)+Dtn
�

bDtn−
a

2
Dtn−1

� dRb
dt

+O(Dt3). (9)

The coefficient of dRb /dt simplifies to (Dtn)2/2, as required by the second-order accuracy, if the
condition 2b−aDtn−1/Dtn=1 is fulfilled. Again, we assumed that Rimpl=R for all the
implicitly treated variables. The BDF2 scheme with an adjustable step size corresponds to the
additional restriction a+b=1, which determines both parameters uniquely. In the first time
step, when no Ub n−1 is available, one could use the trapezoidal scheme for second-order
accuracy, or the more stable backward Euler scheme, which introduces a first-order error in
the first time step.
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In the following subsections we address the issue of second-order accuracy (i) for a spatially
first-order discretization for the Jacobian in the linearized schemes, (ii) for the case when only
some of the variables are treated implicitly, and (iii) when only some terms are treated
implicitly. The latter two cases are commonly referred to as semi-implicit discretizations. In the
semi-implicit approach, the time step must be chosen in accordance with the limitations
imposed by the explicitly treated terms. By fully implicit method, on the other hand, we mean
Ub impl=Ub and Rb impl=Rb , disregarding possible differences in the numerical discretization.

3.2.1. First-order Jacobian. Like in Section 3.1, it is possible to use a lower-order discretiza-
tion for Rb impl, which substantially reduces the computational and storage costs for calculating
the Jacobian.

Since Rb is always evaluated to second-order spatial accuracy, we can show that (4) is
second-order-accurate in space and time for b=1/2 from

Ub n+1=Ub n+DtRb high(Ub n)+
Dt
2

[Rb low(Ub n+1)−Rb low(Ub n)]

=Ub n+DtRb high(Ub n)+
Dt
2
�dRb low

dt
Dt+O(Dt2)

n
=Ub n+DtRb high(Ub n)+

Dt2

2
dRb high

dt
+O(DxDt2)+O(Dt3), (10)

where we used Rb highRb and Rb low=Rb high+O(Dx). Rigorous proof uses the mean value
theorem to show that the local error between the computed Un+1 and the exact solution is
then also of order O(DxDt2)+O(Dt3). The same argument holds for the three-level scheme (8)
as well.

3.2.2. Semi-implicit: some 6ariables. When only some of the variables Ub are treated
implicitly, we first advance the explicitly treated Ub expl using a second-order explicit time
integration scheme, e.g. a two-stage Runge–Kutta scheme

Ub expl
n+1=Ub expl

n +DtRb expl
�

Ub n+
Dt
2

Rb (Ub n)
�

=Ub expl
n +DtRb expl(Ub n)+Dt

(Rb expl

(Ub
Dt
2
(Ub
(t

+O(Dt3).

(11)

We subsequently advance the variables Ub impl by (4) using b=1/2 as follows:

Ub impl
n+1=Ub impl

n +
Dt
2

[Rb impl(Ub expl
n , Ub impl

n )+Rb impl(Ub expl
n+1, Ub impl

n+1)]

=Ub impl
n +DtRb impl(Ub n)+

Dt2

2
dRb impl

dt
+O(Dt3). (12)

A similar proof can be carried out for the three-level scheme.

3.2.3. Semi-implicit: some terms. Up to this point we always assumed that for the implicitly
treated variables Ub impl all the fluxes and sources are treated implicitly, thus, for these variables
Rimpl=R disregarding possible differences in the discretization. We face a new problem when
Rimpl"R, for example, when only the source terms S are treated implicitly. This may be useful
for solving resistive MHD problems, where the stability constraints on the time step arise from
both the fast magnetosonic waves and the resistive diffusion time scale. As the grid resolution
increases and Dx decreases, the diffusive time scale becomes more restrictive than the CFL
condition, because it scales with Dx2 rather than Dx. In such situations, a semi-implicit
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approach that treats the diffusive source terms (and only those) implicitly, can be highly
effective.

We can combine an explicit two-step method for the explicitly treated terms Rb expl, where
the predictor step involves the total residual Rb , and an implicit treatment for Rb impl, as

Ub n+1=Ub n+DtRb expl
�

Ub n+
Dt
2

Rb (Ub n)
�

+
Dt
2

[Rb impl(Ub n)+Rb impl(Ub n+1)]

=Ub n+DtRb (Ub n)+
Dt2

2
dRb expl+dRb impl

dt
+O(Dt3), (13)

where Rb =Rb expl+Rb impl. This scheme is analogous to the trapezoidal scheme. The general-
ization of the three-level scheme (8) requires a predictor step with a time step bDt since the
term Ub n−Ub n−1 already contains contributions to dRb expl/dt, thus

Ub n+1=Ub n+DtnRb expl(Ub n+bDtnRb (Ub n))+DtnRb impl(Ub n)

+Dtn

�
a

Ub n−Ub n−1

Dtn−1

−a Rb (Ub n)+bRb impl(Ub n+1)−bRb impl(Ub n)
n

=Ub n+DtnRb expl(Ub n)+DtnRb impl(Ub n)+Dtn
�

bDtn−
a

2
Dtn−1

� dRb expl+dRb impl

dt
O(Dt3).

(14)

4. JACOBIAN EVALUATION

The linearization (5) leads to large linear systems like (6) containing the Jacobian matrix
(Rb impl/(Ub impl. The same applies when an extra Newton–Raphson iteration is performed to
get a solution of the non-linear system (4). Since we have several spatial discretizations for
fluxes, source terms and boundary conditions already available in the explicit schemes
(Section 2), we opt for a general numerical evaluation of the Jacobian, where all or most of
these discretizations can be used.

The easiest way to extend an explicit code to an implicit one is by using an iterative
method to solve the large linear systems containing the Jacobian matrix, and approximate
each needed evaluation of a matrix–vector product by a direct calculation of the action of
the Jacobian matrix on the vector. This results in a matrix-free method that is independent
of the actual discretizations used.

To allow for preconditioning that can significantly accelerate the convergence of the
iterative solvers, we also implemented two ways of calculating the Jacobian matrix itself
numerically. We describe a general method to calculate the Jacobian matrix using grid
masks. Its implementation in VAC is restricted to any spatial discretization involving
nearest neighbouring cells. A more efficient way to calculate the Jacobian matrix for a
specific spatially first-order discretization, namely the first-order variant of the TVDLF
scheme (3), is also provided. By allowing compact spatial discretizations only, storage
requirements for the Jacobian matrix are reduced.

We discuss the three implementations for evaluating the Jacobian in the following. To
simplify notation, we write from here on (Rb impl/(Ub impl as (Rb /(Ub .
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4.1. Matrix-free Jacobian e6aluation

In cases where, for example, source terms cannot be formulated compactly, or when a
high-order Jacobian evaluation is desirable, we refrain from calculating the Jacobian matrix,
since it would require significant storage. We can avoid the actual calculation of the many
non-zero matrix elements by using an iterative solver for the linear systems, and when the
Jacobian matrix needs to be evaluated in direction DUb , we use

(Rb
(Ub DUb =

Rb (Ub n+eDUb )−Rb (Ub n)
e

. (15)

In this expression, e must be small for physical accuracy, but larger than machine precision to
bound the effect of rounding errors; thus, we use e=10−6DUb , where  ·  denotes the
second norm. The boundary conditions should be applied on Ub n+eDUb before evaluating Rb .
As the other term Rb (Ub n) does not depend on DUb , one evaluation of Rb is needed for each
matrix–vector multiplication.

Since the Jacobian is obtained by explicitly evaluating the appropriate part of the residual,
this method is independent of the discretization used, but may be very expensive computation-
ally. This is not so critical when Rb contains only an elliptic-type source term, where a larger
than nearest neighbour stencil is used. For example, when merely resistive source terms for the
MHD equations are treated in this way, the linear systems that need to be solved are
diagonally dominated and a CG-type method converges fast.

We note that combining a CG-type iterative method with a matrix-free evaluation of the
Jacobian is not always foolproof, as the evaluation (15) is prone to numerical error and
effectively perturbs the matrix at each matrix–vector product. This may, in turn, destroy the
orthogonality properties of the Krylov subspace basis, which is explicitly or implicitly
generated in CG-type iterative methods (more on this can be found in [24]).

However, the matrix-free approach can be used successfully when the Krylov dimension is
kept moderate or small, like in the MRAI schemes discussed in [3]. In MRAI schemes, the
linearized equation of an implicit scheme in which one is interested is solved approximately
with a few minimal residual (GMRES) iterations. The convergence of GMRES is not checked,
the number of iterations is kept simply fixed. To assure stability, the step size is then adjusted
in a special way. The MRAI time stepping is not unconditionally stable, but its stability region
is much wider than those of ordinary explicit schemes. The scheme is adaptive in the sense that
the solution components corresponding to the stiff part of the spectrum are treated as in an
implicit scheme [3]. The attractive features of MRAI are: (i) the possibility to use the
matrix-free evaluation (15), which makes the storage requirements of the scheme very low, and
(ii) the fact that they are easily parallelized. Ideal, linear scaling on distributed memory
architectures for MRAI schemes is demonstrated in [25].

4.2. General Jacobian e6aluation using grid masks

It is also possible to calculate the individual matrix elements numerically in a fairly general
way. Since storage and computational demands for the Jacobian matrix become excessive
when the spatial discretization uses a larger than nearest neighbour stencil, we limit the
discussion of this method to compact stencils. However, the method is more generally
applicable whenever a structured grid is used.

Again, we want to devise a method where the calculation of the Jacobian matrix is
independent of the way in which Rb is evaluated. This then offers the possibility to, for
example, use a first-order upwind evaluation for the fluxes, without the effort to linearize the
(approximate) Riemann solver in Ub analytically.
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When the grid is structured, and when only neighbouring cells influence the evaluation of
the fluxes and source terms at a certain grid cell, we can easily label the grid cells such that the
stencil patterns corresponding to the same label do not overlap. In D dimensions, we subdivide
the grid into blocks of size (2×D+1)D within which a specific labelling of the grid points is
repeated. The obtained grid masks providing the labels are shown in Figure 1. In 1D all grid
points are grouped in consecutive blocks of three points, in 2D we split the domain up in 5×5
squares, and in 3D the domain is split in 7×7×7 cubes.

We perturb a certain component w of the implicitly treated Ub by e in all grid cells j that
carry the same label in the masked grid, apply the boundary conditions, and subsequently
evaluate Rb for the perturbed state Ub +ed j

w over the whole grid, with e=10−6Uw. The
matrix elements are obtained from

(Ri
u

(Uj
w=

Ri
u(Ub +ed j

w)−Ri
u(Ub )

e
. (16)

In this expression, the superscript u denotes the component of Rb considered, while the grid cell
i must be inside the stencil corresponding to the perturbed cell j. In 1D, for instance, when all
cells labelled with 1 are perturbed, we can immediately read off the main diagonal contribu-
tions to the Jacobian matrix for all cells labelled with 1, simultaneously with lower and upper
diagonal contributions for cells labelled with 2 and 3 respectively. As we loop over the variable
index w and the grid labels from 1 to Nstencil=2×D+1, we can build up the whole matrix.
Overall, when we have Nimpl implicitly treated variables, we can build up the full Jacobian
matrix in this way at the expense of 1=Nstencil×Nimpl explicit evaluations of Rb on the full grid.
Note also that this method builds up the Jacobian matrix in a data parallel fashion.

Since we use numerical differentiation to calculate the matrix elements, the algorithm (16) is
independent of the actual discretization. Therefore, we can easily exploit the first-order variant
of the TVDLF scheme given in (3), but also the first-order upwind method, i.e. the unlimited
and one-step variant of the TVD-MUSCL scheme that uses the Roe-type approximate
Riemann solver. Moreover, whenever source terms can be calculated using a compact (nearest
neighbour) stencil, they can be included directly in the Jacobian calculation. This is useful for
compactly formulated elliptic-type source terms that impose a too restrictive time step
limitation. To demonstrate this, we implemented compactly formulated resistive source terms
for the MHD equations in the Jacobian calculation, and use them in the accompanying paper
[14] to solve a time-dependent resistive MHD test problem.

We note that other grid masks could be defined to deal with larger stencils, but the perfect
tiling of the grid by the stencil pattern may not always be possible. Our algorithm may serve
as a general guideline to build up the Jacobian for implicit time integration schemes using an
existing explicit code and a moderate amount of extra coding. Finally, we note that special

Figure 1. Grid masks used for the calculation of the Jacobian matrix.
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care is taken to be able to deal with periodic boundaries, which introduce extra blocks in the
Jacobian matrix. In our implementation, the number of grid points in the direction of the
periodicity must be a multiple of Nstencil.

4.3. Efficient Jacobian e6aluation for TVDLF

A third option available to calculate the Jacobian matrix is specifically designed for
obtaining the Jacobian for the first-order TVDLF-variant given by (3) more efficiently. Indeed,
when we write

(Rb
(Ub = −%

i

(i

(Fb
(Ub +

(Sb
(Ub , (17)

and subsequently use the spatial discretization (3) to evaluate the residual, we obtain the
matrix elements (in 1D, and similarly in more than one spatial dimension) from

(Ri
u

(Ui
w=
(Si

u

(Ui
w−

1
2Dx

(c i+1/2
max +c i−1/2

max )
(Ui

u

(Ui
w ,

(Ri
u

(Ui+1
w = −

1
2Dx

(Fi+1
u

(Ui+1
w +

1
2Dx

ci+1/2
max (Ui+1

u

(Ui+1
w , (18)

(Ri
u

(Ui−1
w = +

1
2Dx

(Fi−1
u

(Ui−1
w +

1
2Dx

ci−1/2
max (Ui−1

u

(Ui−1
w ,

where u and w refer to specific components of Rb and Ub , and i is a grid cell index. Numerical
differentiation is used to take the partial derivatives, hence, for any function f we have:

(f
(Uw=

f(Ub +edw)− f(Ub )
e

. (19)

Since Fb and Sb need to be evaluated for each w=1, . . . , Nimpl only once over the full grid, the
total computational expense is approximately Nstencil times less than for the general algorithm
described in the previous section. On the other hand, the evaluation of (18) itself involves all
the matrix elements of the Jacobian, thus it has to be carefully optimized to achieve the
expected performance.

The terms (Uu/(Uw are Kronecker deltas du
w except in the ghost cells, where the boundary

conditions may couple the different components of Ub together. Therefore, the boundary
conditions are applied both on Ub and Ub +edw, and a numerical derivative is taken for the
resulting (Uu/(Uw in the ghost cells. The partial derivatives of the fluxes (Fu/(Uw are also
calculated in the ghost cells, and eventually the matrix elements (Ri

u/(Ughost
w are added to the

matrix element (Ri
w/(Uj

w, where j is the index of the physical cell on which the ghost cell
depends.

Note that in (18), we assume that the source terms Sb are local. An example for such a local
source term is an external gravitational field. Also, we do not differentiate the maximal
physical propagation speed cmax, which causes a subtle difference between the matrix obtained
from (18) and the Jacobian matrix calculated by the general method (16), even when the same
spatial discretization (first-order TVDLF) is used. Neglecting the dependence of cmax on Uw is
identical to the ‘dropping the time level’ approach suggested by Yee [19]. We note that our
implementation of this Jacobian calculating method works for 1D, 2D and 3D Cartesian, polar
and general structured grids, for slab and axial symmetry, and for normal and periodic
boundaries.
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5. LINEAR SYSTEM SOLVERS

The solution strategy that we adopt to solve the large linear systems containing the Jacobian
matrix efficiently, depends on the dimensionality and the type of problem at hand. If the
Jacobian matrix is available, iterative solvers can exploit suitable preconditioners, or the linear
systems can even be solved by a direct method.

In the linear systems like (6), we always work with normalized variables independent of the
solution strategy, so that we solve for unknowns x related to the updates DUb =Ub impl

n+1−Ub impl
n

according to

xu
DU impl

u'
Ngrid

−1 %k (Uk
u,n)2

, (20)

where the total number of grid cells k is denoted by Ngrid, and u selects a component of the
vector of conserved quantities Ub . We normalize each component of Ub separately, since the
physical units may be very different, which can be a problem for the iterative schemes that
handle all unknowns the same way. Similarly, we use normalized right-hand-side vectors b in
the linear systems. In this way, we end up solving linear systems A. x=b. Therefore, when we
use iterative solvers for the linear systems, we can use an absolute stopping criterion both in
steady state and time-accurate calculations. For steady state calculations, we account for the
possibility of a very large (pseudo) time step Dt. In cases where a preconditioner is exploited,
we use a relative stopping criterion instead.

5.1. Direct linear system sol6er for 1D problems

A spatially first-order evaluation of the Jacobian matrix on a 1D grid leads to a block
tridiagonal matrix structure. For these banded matrices, storage demands are low and a direct
solver can be used. We implemented a direct block tridiagonal solver, together with a cyclic
version based on the Woodbury formula [26] to deal with periodic boundary conditions. The
direct solver for the block tridiagonal systems can be combined with a reordering based on a
combination of domain decomposition and cyclic reduction. The resulting parallel version of
the direct solver performs well on distributed memory machines [27].

5.2. Iterati6e sol6ers for multi-dimensional problems

For multi-dimensional problems, the linear systems can only be solved by iterative means,
since direct methods would require too much CPU time and memory. The iterative method
used must be chosen in accordance with the algebraic properties of the occurring matrix
(symmetric or not, diagonally dominant or other, . . . ). The CG method is used for symmetric
positive definite problems, while GMRES, GMRESR, Bi-CGSTAB and BiCGstab(l) are used
for solving unsymmetric systems. For advection-dominated problems, however, the matrices
appearing in the linear systems are strongly non-symmetric and non-diagonally dominant. For
such problems, suitable preconditioners are vital to accelerate the convergence behaviour of
the iterative methods.

A nearest neighbour discretization of the Jacobian matrix on a structured grid leads to block
pentadiagonal systems in 2D and block heptadiagonal systems in 3D. In the following, we
briefly describe the MBILU preconditioning technique that we use for these systems. Let us
denote the block penta- or heptadiagonal matrix by A. . We first construct a lower triangular
matrix L. and an upper triangular matrix U. such that A. :L. U. , and the action of L. −1 and U. −1
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can be computed without too much computational effort. In order to solve a linear system
A. x=b, the iterative method is applied to the preconditioned system

L. −1A. U. −1x̃=L. −1b, x=U. −1x̃. (21)

The factors L. and U. come from a block incomplete LU (BILU-) decomposition, in which the
block sparsity pattern of L. +U. is taken the same as that of A. . For our applications, both in
two and in three dimensions, this implies that during the construction of L. and U. only
corrections on the main diagonal blocks are performed. For this kind of BILU-decomposi-
tions, computer storage demands are very low, because the preconditioner only requires one
extra block diagonal.

In [10] it is shown that the matrix–vector multiplication with the preconditioned matrix can
be implemented efficiently by using a block form of the Eisenstat implementation [28]. The
multiplication with the preconditioned matrix L. −1A. U. −1 costs about the same number of
floating point operations as the multiplication with A. . We use a block form of the relaxed
modified incomplete decomposition [29], hence MBILU. The fill-in blocks that are not allowed
in the factors L. and U. are first multiplied by a constant factor arelax in the interval [0, 1], before
they are added to the main diagonal blocks. In [10] it was pointed out that good convergence
is obtained for arelax in the interval [0.3, 0.7].

Again, extra blocks may arise due to periodicity in one or more directions. In the current
implementation, this is accounted for in the first spatial direction only. Periodicity in other
directions could be taken into account by allowing extra fill-in blocks in the incomplete
LU-decomposition. This could also be useful for lowering the number of (GMRES or other)
iteration steps. Experiments showed that when preconditioning is needed (unsymmetric sys-
tems, as in advection-dominated problems), the actual choice of the iterative scheme is of lesser
importance: it is the preconditioner that determines the rate of convergence. Therefore, a
deciding factor in the choice of iterative scheme to solve the preconditioned linear systems is
the amount of storage they require.

The storage requirement is best measured by the number of temporary vectors required,
where each vector contains Nimpl×Ngrid double precision numbers. The CG method can only
be used for symmetric matrices, and the preconditioned matrix is not symmetric in general.
Without preconditioning, however, it can be a very efficient iterative scheme for symmetric
matrices obtained from elliptic-type terms. In our implementation, CG requires only two
temporary vectors. Bi-CGSTAB works for symmetric and non-symmetric matrices as well, and
it requires storage for seven vectors. Its more stable variant BiCGstab(l) needs 5+2l vectors.
The GMRES(Nrestart) scheme requires Nrestart+1 temporary vectors. Reducing Nrestart, i.e. the
dimension of the Krylov subspace, will typically decrease the convergence rate, so values
between 5 and 20 are usually used. Another possibility to ease storage requirements, without
sacrificing the convergence properties, is to use the nested GMRESR(Ninner, Ntruncate) al-
gorithm, where Ninner is the Krylov dimension for the inner GMRES iteration, while Ntruncate

denotes the number of Krylov subspace basis vectors that are kept. This method needs
2+2Ntruncate+Ninner vectors. Typical values are Ninner=2, 3 and Ntruncate=5. In our experi-
ence Bi-CGSTAB is often the optimal choice.

6. EXAMPLES

We illustrate the effectiveness of a fully implicit approach on two steady state problems. For
examples of implicit, time-accurate calculations based on the algorithms presented in Section
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3.2, we refer the reader to the accompanying paper [14]. We exploit pseudo-time stepping in
both problems, and use MBILU preconditioning when iteratively solving the linear systems (5)
with Bi-CGSTAB. Both approaches for calculating the low-order Jacobian matrices are
compared for a 2.5D hydrodynamic calculation modelling smooth transonic polytropic stellar
outflow. A 2D MHD problem uses the efficient TVDLF Jacobian evaluation. Examples of the
MRAI strategy in combination with a matrix-free Jacobian evaluation are found in [14].

6.1. Transonic stellar wind from a rotating star

We set forth to calculate an axisymmetric stellar outflow from a star of mass M� and radius
r�, rotating with constant angular velocity V�. The star is surrounded by a hot corona. As a
result, the hot coronal plasma can overcome the gravitational pull of the star by the outward
acceleration resulting from thermal and centrifugal forces. A stellar wind ensues, with a
continuous acceleration from low, subsonic speeds close to the stellar surface to supersonic
speeds at large radial distances. We can model this flow using the Euler equations, with the
energy equation replaced by a polytropic constraint where the thermal pressure p�rg, with
density r and polytropic index g. The axisymmetry assumes (/(8=0, in a cylindrical (R, 8, z)
co-ordinate system centred on the star with its polar and rotation axis as the z-axis. Hence, we
solve for the conserved variables density r(R, z) and the three components of the momentum
vector rv(R, z) on a radially stretched spherical (r, u) grid in a poloidal cross-section. We
restrict the calculation to a 300×20 grid in (r, u) modelling a quarter of the full poloidal
cross-section. Boundary conditions at the pole and the equator are then simply found from
symmetry arguments. The grid ranges in radius r� [1, 50]r�. At the outer boundary, where the
outflow is supersonic, all quantities are extrapolated linearly into the ghost cells. For the
boundary conditions at the stellar surface and for the initial conditions, we make use of a
partially analytic 1D solution for the equatorial regions only. This approach is explained fully
in [12]. In essence, the equatorial solution provides rE(r), 6 r

E(r), 68
E(r), and the 2D calculation

starts by setting r(r, u ; t=0)=rE(r), 6r(r, u ; t=0)=6 r
E(r) and 68(r, u ; t=0)=68

E(r) sin u so
that it vanishes at the pole u=0, while 6u(t=0)=0 everywhere. The mass flux fmass=rEr26 r

E

from the equatorial solution is used to impose the mass input at the stellar boundary through
r6R= fmassR/r3 and r6z= fmassz/r3. The rotation rate prescribes 68=V�R�, and the density is
linearly extrapolated in the ghost cells at the stellar base.

For parameter values such that 
2GM�/r�=3.3015c� (c� denotes the base sound speed
and G is the gravitational constant), g=1.13, V�r�=0.3c�, the appropriate mass flux turns
out to be fmass=0.01553 when a scaling is used that sets r�=1, r�=1 and c�=1. We solve
the equations both explicitly and implicitly using TVDLF with minmod limiting applied on the
primitive variables. Figure 2 displays the final transonic steady state wind solution obtained:
both streamlines and poloidal Mach contours are shown. The transonic transition occurs at the
labelled non-circular critical curve. Equatorward centrifugal deflection is seen at the base.
Physical discussions of these and other stellar wind solutions can be found in [12].

When we calculate this wind solution implicitly, we can use a Courant number of 1000 and
the efficient TVDLF Jacobian evaluation. The MBILU preconditioner is used in the Bi-
CGSTAB iterative linear solves. The solution is converged when the difference between
subsequent time steps as measured by the relative change from one time level to the next

D2U
D

1
Nvar

%
Nvar

u=1

%grid (Uu
n+1−Uu

n)2

%grid (Uu
n)2

(22)
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Figure 2. Polytropic transonic stellar wind from a rotating star. The star is in the bottom left corner. We show
streamlines and contours (dotted for values below unity) of the poloidal Mach number Mp in the poloidal plane.

drops below 10−8. Note that the normalization is done per component u of the conserved
variables Ub . Implicitly, this problem took 1382 s on a Cray C90, needing 430 pseudo-time steps
with typically 25 Bi-CGSTAB iterations per step. An explicit time integration with the same
TVDLF discretization reaches the same accuracy only after 5000 s. When we use the grid
masking algorithm to calculate the Jacobian and increase the Courant number to 10000, the
implicit solution takes 1920 s needing 354 pseudo-time steps.

6.2. Complex MHD bow shock

A second example is a 2D MHD problem modelling a field-aligned bow shock around a
perfectly conducting cylinder. A purely horizontal flow and parallel uniform magnetic field
impinge on the cylinder from the left where the inflow conditions are held fixed. The cylinder
forms a perfectly conducting impenetrable obstacle, deflecting flow and magnetic field lines. A
quarter of the full problem is solved since there is top–bottom symmetry and an open
boundary mimics the conditions past the cylinder axis. A similar example is shown in [14], but
here we choose the parameters such that the inflow allows for switch-on shocks. It was recently
demonstrated [11,30] that in that parameter regime, the bow shock ‘dimples’ and multiple
shock fronts appear in front of the cylinder, containing a bewildering variety of interacting
MHD shocks. Figure 3 shows the solution for an inflow Alfvén Mach number MA=1.5 and
plasma beta b=0.4, identical in set-up to the result discussed in [11,30]. Magnetic field lines,
which are also streamlines, are shown, as well as a grey-scale contour plot of the density. An
enlargement of the solution is shown as an inset, where contours depict Alfvén Mach numbers,
piling up in shocks. The essential features of the interacting shock fronts are present, but the
overall solution is more diffused than the one shown in [11] (their Figures 2, 5 and 6). This is
because we used a 120×120 spherical grid of radial extent [0.125, 1.4], accumulated towards
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the cylinder and the horizontal symmetry axis, while De Sterck et al. [11] used a specially
adapted stretched elliptic-like grid with grid clustering at the shock front positions.

In the implicit calculation, we demanded the residual D2U to drop below 10−7, and used the
efficient TVDLF Jacobian calculation, MBILU preconditioning and Bi-CGSTAB. The mag-
netic field divergence is controlled using Powell source terms [18], and minmod limiting is
applied to the primitive variables. An efficient way of calculating the steady state solution is
to first take 100 time steps explicitly to overcome the initial transient, and subsequently change
to fully implicit time integration. We took a Courant number of 100 until D2UB10−5, and
then raised the Courant number to 1000 to accelerate convergence to below 10−7. This takes
3.5 h to complete on one processor of a Cray C90. An explicit calculation suffers from
stagnation and residual fluctuations much akin to those found in the two steady state problems
contained in [14]. A similar bow shock flow presented there was calculated seven times faster
implicitly than explicitly. That paper also contains a quantitative comparison of using different
iterative schemes for the linear system solves.

7. CONCLUSIONS

In this paper, we discussed different implicit and semi-implicit integration schemes. We
provided the reader with ample detail, so that our formalism can be taken as a guideline to
extend an existing code using explicit high resolution schemes with implicit time integration
schemes.

Figure 3. MHD bow shock flow around a perfectly conducting cylinder (at right). Since the inflow parameters are in
the switch-on regime, the shock front dimples and multiple shock fronts appear. We show magnetic field lines and
density in grey scale. The inset shows the multiple shock fronts ahead of the cylinder as seen in a contour plot of the

Alfvén Mach number.
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We showed how we always maintain second-order spatial and temporal accuracy, while
using a spatially first-order evaluation for the Jacobian matrix. We note that our formalism
comprises well-known implicit schemes, like trapezoidal and BDF2, while allowing variable
time steps and an implicit treatment of only some terms or variables. VAC is now capable
of solving steady state and temporally second-order time-accurate hydrodynamic and mag-
netohydrodynamic problems implicitly. This is to be done in a problem-dependent fashion,
by lifting, if needed, the most restrictive CFL constraint on the time step.

We implemented two methods where the (numerical) calculation of the Jacobian matrix
is independent of the actual discretization used for the residual. One is the generally
applicable, easily coded matrix-free method, which is used in combination with a CG-type
iterative solver. This approach works fine for stiff elliptic source terms. For advection
dominated problems, one can use the matrix-free method in combination with the MRAI
time stepping scheme [3]. Another discretization-independent method is the general grid
masking algorithm where the Jacobian matrix elements are calculated. This simple al-
gorithm is described in detail, and allows for upwinded discretizations, without the analyti-
cal effort of linearizing the Riemann solver. An efficient Jacobian calculation for the
TVDLF scheme is also provided, and differences between the various implementations are
pointed out.

For the linear system solvers, the most novel feature is the MBILU preconditioner
suitable to deal with advection dominated problems. While more details are given in [10],
we summarize in this paper its properties, including storage requirements. Memory issues
are also compared for the different CG-type iterative solvers.

We illustrated some aspects of the algorithms discussed on two steady state 2D flow
problems, without and with discontinuities (shocks). Other examples, including time-depen-
dent calculations, are found in [12–14]. The algorithmic details given here augment their
brief discussion presented in [14], where a selection of test problems demonstrates the
efficiency of the implicit and semi-implicit time integration schemes. The test problems
described therein model accretion onto a black hole, oscillations of a high density plasma
sheet in very low density surroundings, the formation of a bow shock around a perfectly
conducting cylinder, and reconnection of magnetic field lines.

Finally, large-scale simulations require suitable parallelization strategies. We pointed out
how the Jacobian matrix is calculated in a data parallel way. One can optimally exploit this
type of parallelism by distributing the arrays over several processors. The code has been
ported to high performance Fortran, and its scaling properties are demonstrated in
[31,32].
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